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1 Introduction

Concurrent processing systems can exhibit extremely complicated behavior because of the
complex timing of actions of different processes. Obtaining useful frameworks for analyzing
such systems has been one of the major research problems in computer science.

In recent years, a number of papers have appeared that discuss the problem of analyzing
concurrent systems consisting of a large number of finite state machines [1] [3] [5] [8] [20]
[25]. The basic question there is to decide, given a system S(n) consisting of n > 2 finite
state machines and a property P(n) on S(n), whether or not S(n) satisfies P(n) for all
values of n. Note that conventional theorem provers based on state-space search cannot be
used directly to answer this question, since they can be applied only to instances having a
fixed state-space. The impossibility of solving this problem in general was first shown by
Apt and Kozen [1], and then Suzuki [20] sharpened the result by showing that the problem
remains unsolvable even if S(n) is a unidirectional ring of n identical finite state machines
whose configuration is independent of the value of n. The results reported in [3] [5] [8] [25]
are some of the efforts to find a sufficient condition for guaranteeing that S(n) satisfies P(n)
for all values of n.

In this paper, we investigate the analysis problem stated above for systems that are rings
of identical components, using fair Petri nets for representing the components. Intuitively,
a fair Petri net is a Petri net in which the firing of a prespecified set of transitions is assumed
to occur fairly, i.e., any of these transitions that becomes firable infinitely often must fire
infinitely often. Formally, we define fair Petri nets as a subclass of temporal Petri nets [19].
Temporal Petri nets are Petri nets whose certain temporal constraints are given by formulas
containing temporal operators, such as > ("eventually") and 0 ("always") [11] [12] [17].
Petri nets (see, for example, [14]) are widely used for modeling and analysis of concurrent
processing systems. The combination of Petri nets and temporal logic has been found to be
extremely useful for formal analysis of such systems [10] [21] [22] [23]. Theoretical studies
of various temporal logic for Petri nets are found in [2] [6] [7] [19] [22] [23].

The main result of the paper is a structural induction theorem that can be used to
formally infer the correctness of a ring of any large size from the correctness of a ring
having only a few components. The theorem actually gives a sufficient condition for the
"behavior" of a ring of any large size to be "similar" to that of a ring having only a few
components. Specifically, for k > 2 let Rk be the ring consisting of k components. We
define a concept of "similarity" for rings, and then show that if R 2 and R3 are similar in
this sense and certain additional conditions are satisfied, then for any k > 4, R 2 and Rk are
also similar. This, together with the "correctness" of R 2 in a certain sense, can be used to
ensure that Rk is also correct for all k > 3. Though the theorem is applicable only when Rk

is bounded (i.e., the net representing Rk has only finitely many distinct reachable markings)
for any k > 2, we give a weak sufficient condition for Rk to be bounded for any k > 2. (All For

the examples we discuss in the paper satisfy this condition.) The condition, which is given ,A&i
using the concept of an S-invariant [14], can be tested easily. In principle, if R 2 and R 3 are -Bl
bounded then the similarity of R 2 and R3 and the correctness of R 2 can be tested using an ced El

automatic theorem prover. The usefulness of the theorem is demonstrated using the well- on ...........
known examples of token-passing mutual exclusion [16] and a simple producer-consumer
system. Specifically, using the induction theorem we prove that the given algorithms for
these problems guarantee certain liveness and safeness properties in Rk, regardless of the )n/
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value of k.
The condition that a ring is bounded simply means that the ring is a finite state machine.

Since all related papers mentioned above consider only systems consisting of finite state
machines, the fact that our theorem can be applied only to bounded rings is not a severe
restriction.

Our work has been inspired by those of Kurshan and McMillan [8] and Wolper and
Lovinfosse [25] that present similar induction theorems. A common requirement of their
induction methods is that the human verifier must first find an "invariant" (called "process
invariant" or "network invariant") to carry out the induction. One difficulty in this approach
is that finding such an invariant is not always easy (even if it exists). The method given in
[3] that requires the establishment of a "bisimulation" between two systems seems to suffer
from the same difficulty. In a sense, our induction theorem gives a sufficient condition for
the existence of such an invariant (or bisimulation). Whether or not the condition of our
theorem is satisfied can be tested using an automatic verifier (if the ring is bounded) and if
so, the theorem assures the correctness of a ring of any size, given the correctness of a ring
having a few components. There is no need for the human verifier to find an invariant to
carry out the verification. It should also be mentioned, however, that the invariant method
can be considered to be more general than ours, since it is possible that the condition of
our theorem does not hold while a suitable invariant exists.

The rest of the paper is organized as follows. In Section 2 we review the basic terminology
of Petri nets and temporal logic. The induction theorem is presented in Section 3 and then
applied to the verification of two examples in Sections 4 and 5. The concluding remarks are
found in Section 6.

2 Fair Petri Nets

The material presented in this section is basically the same as that given in Section 2 of
[21].

For any set S, S* is the set of all finite sequences of elements of S, including the empty
sequence A. Sw denotes the set of all infinite sequences of elements of S. For a finite sequence
a E S* and a possibly infinite sequence /3 E S* U S'', aof denotes the concatenation of a and
/. a,3 is an infinite sequence if /3 is an infinite sequence. ao is not defined if a is an infinite
sequence. For a finite sequence a E S* and an integer i > 0, a• denotes the concatenation
of i copies of a. a" denotes the concatenation of infinitely many copies of a. ja[ denotes
the length of a E S*. By convention we denote the length lal of a E S' by W, where W is a
symbol such that i < w for any integer i.

A Petri net is a directed graph with two types of nodes, called transitions and places,
and weighted arcs from a node of one type to a node of the other type. Formally, a Petri
net is given as a triple N = (P, T, F) where

1. P is a finite set of places,

2. T is a finite set of transitions, and

3. F : (P x T)U (T x P) -- {0, 1,2, .... is a weight function.

A place p E P is called an input place (or output place) of a transition t E T if F(p, t) >_ 1
(or F(t,p) > 1). Any function M : P - {0, 1,2,...} is called a marking. A place p is said
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to have M(p) "',ns at a marking M. A transition t E T is said to be firable at M iff
M(p) > F(p. every p E P. If t is firable at M, then it may fire and yield another
marking M' Ahat M'(p) = M(p) - F(p, t) + F(t,p) for every p E P. We denote this
by M --+t M'. This relation is extended by

1. M -- M and

2. M -- tM' iff there exists M" such that 16 -*M" and M" --+t M1

for all M, M', a E T* and t E T. If M - M' then M' is said to be reachable from M
by a finite firing sequence a. L(N, M) denotes the set of all finite firing sequences from
M. An infinite sequence a E T' is an infinite firing sequence [24] from M if 3 E L(N, M)
for every prefix # of a. We den-t, by Lw(N, M) the set of infinite firing sequences from
M. Let LOO (N, M) = L(N, M ' (, M) denote the set of all (both finite and infinite)
firing sequences from M. Petr. . structurally bounded if for any marking M, there
are only finitely many distinct m~rk g- 'eachable from M. Usually an initial marking is
associated with a Petri net.

We draw a Petri net using a circle ana a square to represent places and transitions,
respectively. An arc with weight F(p, t) (or F(t, p)) is drawn from p to t (or from t to p) if
F(p,t) > 1 (or F(t,p) > 1). The weight is omitted if it is 1. A marking M is represented
by drawing M(p) dots in (the circle representing) p. Examples of Petri nets are found in
Section 3.

A temporal Petri net [19] [22] is a pair (N, f) where N = (P, T, F') i:, a Petri net and f
is a formula.1 The formula f is regarded as a restriction on the possib-c firing sequences of
N. For a marking M, we denote by £(N, M, f) the set of firing sequences a E L'(N, M)
such that

1. a is either infinite, or finite and terminating in the sense that there is no transition
t E T such that at E L(N, M), and

2. a satisfies f.

The first condition given above implies that the net is assumed to make progress whenever
possible. In this paper we only consider formulas having the form

f(T') = A ((OOT t) D (o0t)), (1)
tET'

where T' C T is a subset of transitions. We call such f(T') an f-formula, where 'f' stands for
"fairness," since an infinite sequence a satisfies f(T') iff every t E T' that becomes firable
infinitely often (O0 T t) in a fires infinitely often (0Ot) in a. The transitions in T - V
need not be fired fairly. For example, if we wish to allow the system to issue a request for
entering the critical section only a finite number of times, then the transition representing
the action of making such a request may be excluded from T'. We call a temporal Petri net
having a formula of the form (1) a fair Petri net.

Let £(N, M, f) be the set of all prefixes of the sequences in £(N, M, f).

Lemma 1 If f is an f-formula, then £(N, M, f) = L(N, M).

'See [19] [21] [22] for a formal discussion on the formulas.
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U1 Pi V1  P2 W 1

Figure 1: A component having one interface transition on each side.

Proof Clearly 1(N, M, f) C L(N, M). Since f is an f-formula, for any a E L(N, M)
there exists some f such that a/i E £(N, M, f), and hence a E £(N, M, f). Therefore
,C(N,M,f) D L(N,M). 0

3 Structural Induction on a Ring

In this section, we present a structural induction theorem that can be used to prove the
correctness of rings of many similar components that are modeled as fair Petri nets. It is
well-known that such induction is not always possible [1] [20]. The theorem presented here
gives a sufficient condition under which the correctness of a ring of any large size can be
inferred from the correctness of rings having only a few components.

Definition 1 A component is a Petri net C = (P, T, F) in which the set T of transitions
can be partitioned as T = TL U TI U TR such that ITLI = ITRI _ 1. The transitions in
TL, TI and TR are called left interface transitions, internal transitions and right interface
transitions, respectively.

Figure 1 shows a component having one left interface transition ul, one right interface
transition wl, one internal transition vl, and two places p1 and p2.

We connect two or more components to form either a chain or a ring by merging the
interface transitions of different components. The internal transitions of a component do
not directly participate in the communication with other components. Formally, we have
the following definitions.

Definition 2 Let C = (PT,F) be a component having places P = {pj,...,p.}, left
interface transitions TL = {ul,...,Ur}, internal transitions TI = {vj,...,vs}, and right
interface transitions TR = {Wl,..., wm}, where T = TL U TI U TR. For each i > 0, Ci =
(Pi, Ti, F1 ) denotes the Petri net having the same structure as C in which

1. each pj is renamed p,,j, Pi = {Pi,1,...,Pi,

2. each uj is renamed ti-,j, Ti,L = {ti-l,1 , ... ,ti-,m}

3. each vj is renamed vij, TO,, = {vil,... vi,s},

4. each w3 is renamed tij Ti,R = {ti, 1,..,ti,,,,}
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CO C,

t- 1 ,1 PO,1 V0,1  P0,2 10,1 P1,1 V1,1  P1,2 t1,1

(a)

Co C,

POJ VO P,2 to Pi V,1P(b)1,

(b)

Co C, C2

P0,1 VOJi P0,2 to,1  P1,1 V1 , P1,2 t1,1 P2,1 V2,1  P2,2 t2 ,1

(c)

Figure 2: (a) Co ( C1, (b) R2 = Co D C1 and (c) R' = Co ( C1 E C2 consisting of the
component of Figure 1.

and T, = Ti,LUTiJUTi,R. F, is identical to F under the renaming given above. For 0 < i < j,

CiE9C i + 1 E)".C. =( (_U P1, U T1, U Fe)
i<t<_i i<t<_i i<1<j

denotes the chain consisting of Ci, Ci+,,..., Cj. (Note, for example, that Ci's right interface
transitions, ti,1 ,..., ti,m, have the same names as the left interface transitions of Ci+1 . So
in Ci (D Cj+j ED .. (D Cj, Ci and Ci+l are connected through ti,,,... ,ti,M.) For each k > 2,

Rk = CO (D C1 (D Ck- = ( U P1, UJ T1, U Ft)
0<1<k-1 0<t<k-1 0<t<k-1

where all subscripts are taken modulo k, denotes the ring consisting of Co, C1,..., Ck-1.

See Figure 2 for illustration. (Ignore the tokens at this time.) Chain Ci(DC i +l ED(D "Cj
is viewed as a new component having left interface transitions Ti,L and right interface
transitions Tj,R. The symbol "0" in Co G) C1 (D-" (D Ck-1 can be viewed as an operator
that closes the chain C1 (D ... ( Ck-1 into a ring using Co, where ED has precedence over (0.
All subscripts are taken modulo k when we discuss Rk. So for example, the left interface
transitions of CO in Rk are tk-1,1 , tk-l, , and C3 eC 4(eC5eCo(eC 1 is the chain embedded
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in R6 consisting Of C 3 , I4, '5, C 0 and C1. For each 0 < i < k - 1, we let Ii = {ti,...,ttm}

denote the set of interface transitions between Ci and Ci+,. The internal transitions of C,
and the interface transitions in i-.I U 1i are said to belong to Ci. An interface transition
thus belongs to two components.

Since Co, C,.. .,k-1 are copies of C, a marking of Rk can simply be described as a
tuple (MO, MI,.. ., Mk-.), where each Mi is a marking of C, so that the number of tokens
in pij of Ci is given by Mi(pj). We assume that all components of a ring except possibly
Co have the same initial marking. As is the case with token-passing mutual exclusion [16],
it is sometimes necessary that we break symmetry by assigning a different initial marking
to one component. Thus for some markings M and M' of C, we let

Mk = (M,'M M

k-I

be the initial marking of Rk in which Co has marking M and C 1,... Ck-1 have M'.
To ensure that the fairness requirement is imposed on an identical set of transitions at

every component of a ring, we take Tk to be a set of transitions of Rk such that

1. for each 1•_• s, either vij E Tk for all 0<i <k-i or vij TkforallO < i <k-1,
and

2. for each 1 _< j _ m, either tij E Tk for all 0 < i < k- 1 or ti, V Tk for all
0< i < k - 1,

and then let f, = f(Tk) be an f-formula for Rk having the form (1). For a transition t, we
say that a E L°(Rk,MMk) is t-legal if either it is infinite and satisfies ((CIO T t) D (0Ot)),
or it is finite and terminating, a is said to be legal at Ci if it is t-legal for all transitions
t E Tk that belong to Ci. Note that a belongs to £(Rk, Mk, fk) iff a is legal at every Ci.

In the following, sets L(Rk, Mk), LW(Rk, Mk), L- (Rk, Mk) and £(Rk, Mk, fk) are sim-
ply written as L(k), LW(k), L'°(k) and £(k), respectively. For convenience, we use "Rk" to
refer to either the Petri net Rk alone or the tuple (Rk, Mk, fk), depending on the context.
There will be no confusion.

Remark 1 Since the initial marking M of Co can be different from those (M') of C1,.... Ck-1
Co can behave completely differently from C 1, ... , Ck-1. Thus many of the results presented
below can be extended to the case when the structure and formula of Co are different from
those of C1,... ,Ck-1. In this paper, we assume that Co is the same as other components
for simplicity of presentation.

Lemma 2 If R 2 is structurally bounded, then for any k > 3, Rk is structurally bounded.

Proof The proof is found in Appendix A. 0

A place of a component that is an input place of a left (or right) interface transition
is called a left (or right) interface place of the component. Since a chain Ci ( ... ( Cj is
viewed as a component, its left (or right) interface places are the left (or right) interface
places of Ci (or Cj).
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Definition 3 Let pi,,. PiL and pj,,.., PIR be the left and right interface places of C,

respectively, where I < il < "" < iL < n and 1 < J, < ... < jR < n. Then for a chain

C. (D C+1 (D"." (D Cb of length at most k - I within Rk and a marking (Mo, M1 ,..., M. - ),
the firability vector of Ca (- Ca+j E ... (D Cb at (M 0 , M 1 ,. . ., Mk-1) is the column vector

Ma-](Pj,)

Ma- 1 (PjR)

Mapii)

Ma(PiL)

Mb(pj,)

Mb(pjR)

Mb+l(Pi1 )

Mb+1 (PiL)

Whether or not an interface transition (in Ia-1 U Ib) of chain Ca (9 Ca+1 @ .' Cb is
firable at marking (Mo, Ml,..., Mk-l) can be determined by examining the firability vector

of Ca (D Ca+1 @ ". (D Cb at that marking.

Definition 4 Let a = t1 t 2 ... ti... E L""(k) be a firing sequence such that for each 0 <

i: lal, Mk --102 ...t. Mi. (Thus Mk = Mok.) For an index 0 < a < k- 1, let Vi be the
firability vector of Ca at Mik. The extended local history of Ca in a, denoted (Ca), is the
sequence obtained from VotlVlt 2 V2 ... by

1. deleting all transitions that do not belong to Ca,

2. replacih~g every remaining t a-ij, va,j and taj by u3 , vj and wj, respectively, and then

3. replacing every maximal substring of identical vectors Vi, Vi2 ... Vi, by a single occur-
rence of Vi,.

The local history of Ca in a, denoted ((Ca)),, is the firing sequence obtained from (Ca)r
by deleting the firability vectors.

((Ca))Q is the firing sequence of C corresponding to the portion of a that occurs in Ca.
(Ca)a, is ((Ca))a together with the information on all the changes in the firability vector of
Ca. We define

h(a) = ((CO)L,, (CI,.), Ck-,,).

In the following, if a is legal at Ca, then we say that (Ca)a (or ((Ca))j) is legal.

Definition 5 For an index 0 < a < k - 1 and a firing sequence a E L'°(k), the externally
visible history of Ca in a, denoted [Ca]t, is the sequence obtained from (C,)a by
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1. deleting all the internal transitions of C, and then

2. replacing every maximal substring of identical vectors Vi, Vi, .. Vi, if any, by a single
occurrence of Vi,.

[Ca]c, is the firing sequence of the interface transitions of C corresponding to the portion
of a that occurs in C0, together with the information on all the changes in its firability
vector. Since a chain is viewed as a component, we extend the concept of externally visible
history of a single component to that of a chain. Thus for chain Ca @ Ca•+ 1 G • • Cb and
a E LO(k),

[C. ED Ca+l (D " " Q.

is the sequence showing the firing of its interface transitions in I,-I U Ib and all the changes
in its firability vector. (Note that we use ((Ca)),, to denote the firing sequence of C cor-
responding to the transition firings in C0 in a, and thus ((C , ED Ca+i E ... E Cb)),, is not
defined unless the chain consists of a single component. Similarly, (C0 E C0 +1  ' . Cb).
is not defined unless the chain consists of a single component.)

Example 1 Consider rings Rk consisting of the component of Figure 1. Assume that at the
initial marking Mk, place po,1 (the copy of Pi in Co) has one token and all other places are
token-free. Figure 2 shows R 2 and R3 with their initial markings. Since no two transitions
share an input place, the fairness requirement is redundant. That is, we can take Tk 0
and fk = f(Tk) = true. Then the only firing sequence in C(2) is

a = (Vo, 1toiV1,itii)w.

The firability vectors of Co have the form

[:]
where x and y are the token counts of interface places Pl,2 and Po,2, respectively. It is easy
to show

((o))0 (viwiui)w

and [Cl 0 0
In R3, the firability vectors of Co show the token counts of interface places P2,2 and P0,2.

The only firing sequence in C(3) is

0 = (vo,,to, 1v1 ,,,t,,v 2,t 2,1 )W

and the reader can verify that (Co) 0 = (Co),q, ((Co)), = ((Co)), and [Co]. = [Co]f. 0
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Lemma 3 Let a E L"(k) and 3 E L'(f) be firing sequences such that for some 0 < a <_
b < k - I and O< c < d <K - 1,

[Ca + Ca+1 + "" ED ('b]+ = [C, QD G'+ 1 ÷ .. ('4]i.

Let J = c + (b - a + 1)+(I- 1- d) = f + (c- d) + (b- a). Then therm exists a firing
sequence -y E L"(J) such that

h('I) = •(o,, •.,( c )0 (C.),,,. .. (Cb),,, (Cd+ 1),3,..., 1)3)

c b-a+l 1-1 -d

Proof We only give an outline. Suppose that we construct a ring of size J by connecting
Ca(DCa+l -t D'Cb of R' and Cd+l ()."DCt-I EDCO"D . -1 of R'. Since [CaED
Ca+i ED E Cb6]. = [C k Cc,+ ("D (D Cd]O, we can fire the transitions in a that belong to
C.EDCa+i (" .. DCb and the transitions in 0 that belong to Cd+1 (" ..) C_ DCo(D.. •(DC-i
in such a way that (a) the interface transitions between C,_1 and Ca, and between Cb and
Ca+a, are fired simultaneously, and (b) the token counts of the input places of the interface
transitions between C,_1 and Ca, and between Cb and Cd+i, change in the same manner
as those of the input places of the interface transitions in Ia-. U lb in a. The resulting
sequence -y is a firing sequence in L¶(J) satisfying the condition on h(y) given above. 0

Recall that C(k) is the set of firing sequences a in Rk from Mk satisfying fk, i.e., a is
legal at every Ci. For each 0 < i < k - 1, we denote by £-.i(k) the set of firing sequences
a E LO°(k) that are t-legal for all transitions t of Rk except possibly the internal transitions
of Ci. Such a may or may not be legal at Ci.

Definition 6 Rk = CoOCI"ED ."..@C- and R' = Co® C1 qD... (D Ct- 1 are similar, denoted
Rk .. Rt, if

1. {(Co),ja E C(k)} = {(Co).Ia E C(t)} and

2. {(Ci)Ija E C(k)} = {(Cj),ja E £(f)} for any 1 < i < k - 1 and 1 < j < I - 1.

Definition 7 Rk = CO0C1(D•..DCkl and R' = Co®C1 "ED "qC-1 are strongly similar,
denoted fý zz Rt, if

1. {(Co)la E C£-o(k)} = {(C'oja EC-o(t)} and

2. {(C 1),ja E C-i,(k)} f{(Cj),ja E A-j(i)} for any 1 < i < k - 1 and I < j K I - 1.

Intuitively, if Rk - Re, then as long as the components behave legally, none of the copies
of C knows which of Rk and R' it is in, and none of the copies of C other than Co knows
which copy of C it is. The strong similarity Rk ; R' assures that the same is true for any
copy of C that may violate the f-formula for its internal transitions, as long as all other
components behave legally. Note that Rk ; R t implies Rk•- R.

9



Figure 3: A component having one place.

Co C, Co C, C2

PO'I to,1  P1,1 t1 j PO,1 to,1  P t PP21 t,2,1

(a) (b)

Figure 4: (a) R2 and (b) R3 consisting of the component of Figure 3.

Example 2 We have seen that rings R2 and R 3 given in Example I satisfy

{(Co),ja E C(2)} = {(Co)Ja E L(3)}.

Using a similar argument, we can also show that

forj = 1,2. Thus R 2 - R3. We leave it to the reader to verify that in fact, R2 - Rk holds

for any k > 3. Furthermore, since T k = 0, 2-,i(k) = £(k) for any 0 < i < k - 1. Therefore

R2 - RRkimplies R2 zRk. 0

Example 3 Consider rings R2 and R 3 shown in Figure 4 consisting of the component of
Figure 3. Assume that at the initial marking, place po,1 has one token and all other places
are token-free. As in Example 1, take Tk - 0, and thus fk = f(Tk) = true. The only
firing sequence in f2(2) is

a =

with

1 W1 I ul)-,

where the firability vectors of Co show the token counts of interface places P1,1 and Po,1. As
for R3 , the only firing sequence in C(3) is

a = (to,it 1,t 2,I)w

with

(CO) ( [1 0

10



[ _ /u1u P1 v1 P3 V2 P5 t W1

P4

Figure 5: Component C such that R2 - R3 but R2 4 R3 .

where the firab'lity vectors of Co show the token counts of interface places p2,1 and po,1.
Since (C0), ý \,o)O, we have R2 9L R'. On the other hand, it is easy to show that R3 3- Rk

holds for any k > 4. Since Tk = 0, this implies that R3 ; Rk fur any k > 4. We leave
details to the reader. C0

Example 4 Figure 5 shows a component C such that R2 -, R' but R2 9 R3 . Tk is the set
of all transitions in Rk. Initially, Co has a token in P2 and p3. (Strictly, we should say that
Co has a token in P0,2 and P0,3, that are the copies of p2 and p3 in Co. For convenience, in
this example we use the original names in C to refer to places and transitions of Ci.) All
other components Ci have a token only in p3. Intuitively, the components keep circulating
the token that is initially in P2 of CO, using u2, V3 and w2, and later using u2, v4 and w2
since v2wI should cventually fire to satisfy the fairness condition, unless ul v, fires. Suppose
that in R3 , Co violates fairness and fires v3 w2 (u 2v3W2 )w• C1 and C2 can still continue to
circulate the token indefinitely without violating fairness, by firing V2W1 in C1 and ujvj in
C 2 and thus moving the token in P3 to P4 in both components. (Note that wl of C1 is the
same as ul of C 2 .) In R 2 , however, if Co violates fairness and fires V3 W2 (U 2 V3 W2 )w, then CI
eventually fires v2 (to satisfy fairness) but it cannot fire wl, since w, of C1 is the same as
ul of Co and Co never fires ul. So w, of C1 remains firable forever and never fires, and thus
fairness is violated at C1. A formal analysis based on this observation shows that R2 9 R3.
The fact that such a scenario cannot happen if all components behave fairly is the basis for
proving R2 - R3 . We leave details to the reader. 0

The main goal of this section is to prove the next theorem that can be used to prove
the correctness of rings consisting of an arbitrary number of copies of C.

Theorem 1 If R2 is structurally bounded and R2  R3 , then R2 , Rk for any k > 3.

We need the following lemmas to prove this theorem.

Lemma 4 If R 2 ,,- R3 and R2 - Rk for some k > 3, then whenever either i = j 0 or
both 1 <i < k- 1 and l <j < k,

{(Ci)Jaa E:(k)} c {(C3)faEL(k +l)}-
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Proof Since R2 ,- Rk implies that the sets {(C,),ja E C(k)} are all ideatical for 1 < i <
k - 1, it suffices to show that for any a E 1(k), where

h(a) = ((Co),, (C,),,.--, k-,L),

there exist # and 3' E £(k + 1) such that

h(8) = ((Co),, (C,,,

[k 110

and
h(O') = ((Co)) ,, (CI)g,, (CI)a, (C 2 )o,..., (Ck.,) 0 ).

[Col.

In the following we show the existence of such 0. The argument for 3' is similar and is thus
omitted. Since R2 - R , there exists -y E L(2) such that

h = ( (Co)Y ,Ck-1,>).

[COC (D-...E-Ck-2],,

Since R2  R3 , there exists b E C(3) such that

h(b) = ((CO),, (C1)S, (C2)6).

Since [Ck-lie = [C1 E) C 216 , by Lemma 3 there exists c E L'(k + 1) such that

h(E) = ((CO), (C),,.. ., (Ck-2), (C,)6 , (C2 )6 ).

[ck-11o

Since all elements of h(c) are legal, c satisfies fk+1. Therefore f E C(k + 1). 0

Remark 2 The proofs of Lemmas 3 and 4 do not use the assumption that f is an f-formula.
In fact, the two lemmas are true for an arbitrary formula f, as long as the legality of any
a is determined only by the legality of the elements of h(a).

Lemma 5 Let t be a left (or right) interface transition of Ci of R2 or R3 . If R 2 , R',
then a firing of t does not change the token counts of the right (or left) interface places of
Ci.

Proof We consider the case when t is a left interface transition of C1 of R3 . Other cases
are similar. Take any at E L(3). Since R2 - R3 , there exists /3t E C(2) such that
(Co).t = (Co)Ct. Suppose that the firing of t in at changes the token counts of the right
interface places of C1 of R 3 . Then the firing of t in /3t changes the token counts of the right
interface places of C1 of R2 , since C1 has the same structure in R2 and R3 . Then, since
(Co)at = (Co)pt implies (Co), = (Co) 0 , the firing of t in at should also change the token
counts of the right interface places of C2 of R3 . But this is impossible, since t does not
belong to C 2. 0

2The underbrace indicates that [Ck-, e Ch]5 = [Ck-1]o. Although this relation is implied by the forms
of h(a) and h(6), we use this notation to improve readability.
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Lemma 6 If R2 - R3 and R 2 - Rk for some k > 3, then for any a E L(k + 1), where

h(a) =((CO), (C,),,,, (Ck-2), (Ck- ,, (Ck),

there exists /3 E L(k) such that

h(Ol) = ((CO),,, (CI) ,...., (Ck-2),,, (Ck-I)o) (2)

[Ck_•EDCk]-

Proof The proof is by induction. If a = A, then /3 = A E L(k) satisfies equation (2)
since both in Rk and Rk+l, initially Co has marking M and all other copies of C have M'.
Assume that for some a E L(k+ 1) such that at E L(k+ 1), there exists 03 E L(k) satisfying
equation (2). There are three cases.

Case 1: t is an internal transition of Co e9 C 1 (D "" (D Ck-2.
Clearly t is firable in Rk after 3, i.e., ft E L(k). Since a firing of t can change the
token counts of the places in Co E) C 1 E) ... E) Ck-2 only, and the changes are identical
in Rk and Rk+l, /3t has the property

h ( ,3 t ) = ( ( C o ) .t, , ( i . , --- C k 2 . , ( k l

[Ck--I(DCk]Q,

Case 2: t E Ik-2UIk.

Consider the case when t E Ik-2, i.e., t = tk-2j for some I < j _< m. Since [Ck-1,3 =

[Ck- 9 (Cka, we have /t E L(k). Now we prove that [Ck-1]]it = [Ck_1 (9 Ck]ji. A
firing of t changes the token counts of the right (or left) interface places of Ck-2 (or
Ck-1) in the same way in Rk and Rk+l, and it does not change the token counts of
the left interface places of Co in either ring sinc t does not belong to Co. Also, it does
not change the token counts of the right interface places of Ck of Rk+1 since t does not
belong to Ck. It remains to be shown that the token counts of the right interface places
of Ck-] of Rk do not change by a firing of t. This follows from Lemma 5 and the fact
that, by Lemma 1 and R 2 -, Rk, there exists 7 t' E L(2) such that (Ck_,1)ft = (Cl)',t,,

where t' = toj is the interface transition of C 1 in R 2 corresponding to t of Ck in Rk.

Therefore

h(/3t) = ((CO),,t, (CI) ,,..., (Ck-2)•,t, (Ck-,)13  ).

[Ck_1 @Ck]jt

The argument for the case when t E Ik is similar.

Case 3: t is an internal transition of Ck-l (9 Ck.

By Lemma 1 and the assumption that R 2 - Rk, there exists 7 E L(2) such that

h(yj) = ((Co),, (Ck-,) )

Then since [Ck-1I] = [Ck-1 (D CkjI, by Lemma 3 there exists 6 E L(3) such that

h(b) = ((Co)p, (Ck-.1) 6 , (Ck),)

= ((Co),, (Ck,-,1), (Ck),).
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Let t' be the internal transition of C 1 ( C2 in R3 corresponding to t, i.e., either

t = tk-l,3 and t' = tlj for some I < j < m, or t = vk-.,, and t' = vl, 3 or t = Vk,. and
t'= v2,J for some 1 < j < s. Then since at E L(k + 1), we have it' E L(3) where

h(bt') = ((Co) 6 ,,, (Ck-_,)t, (Ck)o,t).

Since R 2 -,, R3 , there exists ( E L(2) such that

h(c) = ((Co) 6,,, (CI) ).

[Ck--l eCk]Q,

Since [C1], = [Ck-1 ED Ck]at, by Lemma 3 there exists ( E L(k) such that

h(() = ((Co),,(Cit,.. ., (Ck-2)Q,, (CO, ).

[Ck).--I CA]ar

This completes the induction. 0

Lemma 7 If R 2 is structurally bounded, R2 ; R 3 and R2 - Rk for some k > 3, then

whenever either i = j = 0 or both 1 < i < k - 1 and 1 < j :S k,

{(C,)IJa E .(k)} ; {(Ci)Jla E C(k + 1)}.

Proof Since R2  Rk implies that the sets {(Ci)c, a E 1(k)} are all identical for 1 < i <
k - 1, it suffices to show that for any a E C(k + 1), where

h(a) = ((CO),, (C,, (C 2),..., (Ck-2),,, (Ck-),,, (Ck),),

there exist # and f0' E C(k) such that

h(/3) = ((Co)o,, (CI)o,, .. , (k-2), (Ck-,)0 ) (3)

[CkI eDCk] 0

and h(P') = (<Co),3,, (C 2),,,... , (ck_,),,, (CkL).)

[CoeC,].

In the following we show the existence of such f3. The argument for/3' is similar and is thus
omitted.

First, we show that there exists - E L°(k) such that

h(-y) = ((Co), (CI) .. , (Ck-,2)a, (Ck-1), ). (4)

[ChI@Ck]a

Sequence y is just like f0 of equation (3), except that it may not be legal at Ck-l. There
are two cases.
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Case 1: In a, (a) the interface transitions in 4-2 U lk fire only a finite number of times
and (b) the token counts of the interface places of Ck-1 -D Ck change only a finite
number of times.
Let al E L(k + 1) be the shortest sequence such that (a) a = ala 2, (b) the interface
transitions in k-2 U Ik do not fire in a 2 , and (c) the token counts of the interface places
of Ck-l ( Ck do not change in a 2 . Let a' = a .ia E L°°(k + 1) be the sequence that

is identical to a except that no transition in Ck-1 ( Ck fires after al. By Lemma 6,
there exists 01 E L(k) such that

h (13,) = (C o)o, (C l ,, .. ( k_ 2)c,ý, (Ck-,)•,3 .

By the assumption on a given above, we can extend 131 to -1 031a' E L°(k), which
clearly satisfies equation (4).

Case 2: In a, either (a) the interface transitions in Ik-2 U Ik fire infinitely often, or (b) the
token counts of the interface places of Ck-1 @ Ck change infinitely many times.
Such a can be written as a = al X1 2 zX..., where X1 ,X 2 ,... are the interface transi-
tions of Ck-1 E Ck and the transitions in Ck-i E Ck whose firings change the token

counts of the interface places of C-1 (D Ck. For each t > 1, let al = axla02 X2...atXt

be the prefix of a ending with xt. By Lemma 6, for each I there exists #3t E L(k) such
that

h ( ,3 ,) = ((C o) ,,,, e l a , ,(C k _2) ,.,, (C k- 1>t3t )

[Ck-, ¢Ck]•j

Since [Ck-i E Ck] ac = [eCk-1,,, 13t can be written as 13t = rlYly2 y2 . ..rtyt, where if xi
is an interface transition of Ck-l (EDCk then yi is the corresponding interface transition
of Ca-1 of Rk, and otherwise xi and y, respectively change the token counts of the
interface places of Ck-1 lDCk and Ck-i in the same way. Clearly, we may assume that

for each i > 1, the internal transitions of Co E) ... (D Ck-2 fire in exactly the same way
in a, and ri. Let Mi be the marking of Rk+l reached right after the firing of xi,'and
Ni the marking of Rk reached right after the firing of yi. Call a tuple of the form

( Xi, Mi, yi, Nj; xi+,, Mj+l)

a pattern. Note that by Lemma 2 and the assumption that R2 is structurally bounded,
both Rk and Rk+l have only finitely many distinct reachable markings. Thus if I is

sufficiently large, then all patterns that appear in at, and 31, for any I' > I appear in
at and 13t. Then for at+, = aox, ... otxtot+lxt+l, there exists a pattern

(x j, Ms, yj, Nj; x+,, Mj+•) = (xt, Mt, yt, Nt; xt+l , Mt+i),

j < t, that appears in at and 13t. This means that in Rk, we can fire rj+ly +1 after

13t and obtain a sequence 13' = 13rt+yjly 3+l E L(k). Clearly

h(3') = ((Co~c,+i,(C)Qt+l1, , (Ck--)C.1, (Ck-l)y, )

[C151EDCk],+,
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and Rk is at marking N,+, after /3'. Thus we can continue to extend /0' in a similar
manner and obtain -y E Lw(k) such that

h(-y) = ((Co)., (CI) (Ck-2),, (Ck-1) )-

[Ck~i EDC,]O

This completes the proof of the existence of 7 satisfying equation (4).
Since - obtained above may not be legal at Ck-1, we convert it into a legal sequence

/3 E C(k). By R 2 ,' Rk and Lemma 1, for each prefix -t' of -y there exists -" E L(2) such
that

h(-y") =( (Co).,, , (Ck-),).,).

[co e..-eCk_ 2 .,I

Thus by Lemma 2, the structural boundedness of R 2 , and an argument similar to the one
given above for a, we can show that there exists 6 E L°(2) such that

h(b) = ( (Co)6  , (Ck-1),).

Then, since [Ck-]] = [Ck-l e9 Ck]a, by Lemma 3 there exists ( E L°°(3) such that

h(E) = ((CO)p, (Ck-1), (Ck),,).

Then since R2 I R3 and both (Ck-1), and (Ck), are legal, there exists C E LOc(2) such
that

h(C) = ((Co)6 , (Ck-l)()

[CkO-lECk]o

where (Ck-1), is legal. Then by Lemma 3, there exists/3 E LO°(k) such that

h(/3) = ((Co),, (CI),a,,- . -, (Ck-,2), (Ck- 1 ) )

[Ck1EDCkj.

Since all elements of h(/3) including (Ck-1)C are legal, /3 E L(k). This completes the proof
of the existence of /3 E £(k) satisfying equation (3). 0

Proof of Theorem 1 By Lemmas 4 and 7, if R2 is structurally bounded, R 2 ; R3 and
R2 , Rk for some k > 3, then R 2 ,- Rk+1. Thus the theorem follows by induction. 0

A typical argument for proving the correctness of Rk is to show that

S C {((C_))jcx £(k)} C S'

holds for all 0 < i < k - 1, where S and S' are sets of firing sequences of C describing certain
properties of Ci. (We may have to use slightly different sets for i = 0, since the initial
marking of Co can be different from those of the other copies of C.) For example, S' may
consist of the sequences in which every firing of a transition representing "request critical

section" is followed by a firing of another transition representing "enter critical section,"
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to ensure that every request of C, to enter its critical section will eventually be granted.
The use of some nonempty S eliminates the case when C, satisfies the condition imposed
by S' by having, for example, {((C)),,ja E C(k)} = 0. If R 2 is structurally bounded,
R 2 ; R3 and R 2 is correct in the above sense, then by Theorem I and the fact that
{(Cj)ja E C(2)} {(Cj),ja E C(k)} implies {((Ci))aja E C(2)} = {((Cj))alc E L(k)),
we can conclude that Rk is correct for any k > 2. In principle, if R 2 and R 3 are finite
state systems, then the correctness of R 2 and whether or not R2 R 3 can be tested
automatically using a conventional theorem prover.3 As is seen from the discussion given
in Appendix A, whether or not R 2 is structurally bounded can be tested by solving a set
of linear inequalities.

Note that tle proof method described above allows us to verify only "local" properties of
the copies of C in Rk. To prove certain "global" properties of Rk, such as mutual exclusion
("only one copy of C in Rk can enter a critical section at a time"), we need a result such
as the following.

For a firing sequence a E C(k) and each 0 < j < m, where m is the number of interface
transitions of C on each side, let pj(a) be the sequence obtained from a by deleting all
transitions except the j-th interface transitions t0 ,j, t 1,j,. ... , tk-.,j.

Theorem 2 If Rk - Rk+l for some k > 2 and pj(a) is either (to,jtl,j ... tk-l,j)" or its
prefix for any a E 1(k), then pj(a) is either (to,jtl,j ... tk1l,jtk,j)w or its prefix for any
a E C(k + 1).

Proof Suppose that there exists a E C(k + 1) such that pj(a) is not (to,0tlj ... tk.l,,tk,j)w

or its prefix. Then in a, eithei (a) some component Ci, i $ 0, fires tij before ti-,,j fires
for the first time, or (b) some component Ci fires tij twice without firing ti-,,j between the
two firings of tij. (Here, subscript i - 1 is computed mod (k + 1).) Since R - Rk+1, there
exists /3 E C(k) such that (a) (Ci), = (C1 )o if i $ 0 and (b) (Ci)• = (Co),C if i = 0. Then
pj(/3 ) is not (to,jtl,j ... tk-lj)w or its prefix. This is a contradiction. 0

Suppose that a firing of ti, represents the transfer of a "token" (or "privilege") from
Ci to Ci+1 . The condition that p,(a) is either (to,jtl,j ... tkl,j)' or its prefix for'any
a E 1(k) implies that there exists a unique token in Rk and initially the token resides in
Co. Theorems 1 and 2 state that if R2 is structurally bounded, R 2 ;s R 3 and there exists
a unique token in R2 , then there exists a unique token in Rk for any k > 2. We illustrate
this proof method in Section 4.

4 Token-Passing Mutual Exclusion

Mutual exclusion is the problem of ensuring that at most one process among a set of k
processes will be in its "critical section" at a time. One way to assure mutual exclusion is
to let the processes form a ring and circulate a unique "privilege token" so that only the
process that has the token can enter its critical section [13] [16]. Such a token-passing mutual

3 We regard the reachability graph of a bounded Petri net with fairness as the state transition diagram of
an w-automaton that accepts both finite and infinite sequences [15], and then use known decision algorithms
for such automata. Although the containment problem for w-automata is PSPACF-complete [18] and thus
the decision algorithms can be highly inefficient, it may still be feasible to use this method for small rings
such as R2 and R). Details will be reported elsewhere.
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Figure 6: Component C for token-passing mutual exclusion.

Table 1: Places and transitions of C.

P, idle

P2 waiting
P3 have received the privilege token
p4  critical section
Ps ready to send the privilege token
ul receive the privilege token
v1  request the critical section
v2  enter the critical section
v3  leave the critical section
v4  pass the privilege token
w, send the privilege token

exclusion algorithm is used in [25] to illustrate the use of an invariant-based induction
theorem. In this section, we model each process of a ring as a component and use our
induction theorem (Theorem 1) to prove that the given algorithm is correct regardless of
the size of the ring. We follow the general strategy outlined at the end of Section 3.

In this section, "C" refers to the component shown in Figure 6 that models a process in
such a ring. Table 1 describes the events and conditions represented by the transitions and
places. Transition ul is the only left interface transition, and w, the is only right interface
transition. The initial marking of ring Rk is given as Mk = (M, M',..., M'), where M is for
Co and M' for Cl,...,CkA:-,. M is given by M(p 1) = 1, M(p 2 ) = 0, M(p3) = 1, M(p 4) = 0
and M(ps) = 0, which we write (10100). Using the same notation, we define M' = (10000).
Thus initially, all components are idling and Co has the unique privilege token in place
Po,3. (P0,3 is the copy of P3 in Co.) We take Tk = 0, and thus fk = f(Tk) = true. So a
component can make either infinitely many requests or only a finite number of requests.

Component C fires v, when it requests the critical section and then waits (in P2) until
the privilege token arrives in place p3 by a firing of ul. Then it enters and leaves the critical
section by firing v2 and v3, respectively. This brings the privilege token to p5, and a firing
of w, sends it to the next component. If the privilege token arrives in p3 when C is idling,
then it can be sent to Ps by a firing of v4 . Note that progress assures that the privilege
token eventually reaches p5.
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Lemma 8 R2 is structurally bounded.

Proof The proof is found in Appendix A. 0

The reachability graph Gk of Rk is a directed graph in which the vertices represent the

markings of Rk reachable from the initial marking Mk and there is an arc with label t

from a vertex v to vertex v' if the marking represented by v' is reachable from the marking

represented by v when transition t fires. For convenience, we identify the markings of Rk and

the vertices of Gk that represent them. (So "vertex Mk" refers to the vertex representing
marking Mk.) Any firing sequence in Rk corresponds to a path in Gk in a natural way.

Lemma 9 R2 , R3 .

Proof Since the set Tk of transitions that must be fired fairly is empty for all k > 2, we

only need to show that R2 - R 3. By Lemma 3, it suffices to show that

1. {[Co].,Ic E £(2)} = {[Co].Ia E £(3)}, and

2. {[CicjQE L(2)} = {[CiaIQE L(3)} for i= 1,2.

In the following, we give an outline of the proof of {[CI], I a E C(2)} = {[C], a E LC(3)}
and leave the remaining cases to the reader. Since T 2 = 0 and every vertex of G 2 (not
shown) has at least one outgoing arc, C(2) consists of the infinite sequences represented

by the infinite paths in G 2 starting from vertex M 2 . By examining G 2 , we can show that
in any infinite path in G2 starting from vertex M 2 , arcs labeled to,1 and arcs labeled t1 ,1
occur infinitely often and alternately, starting with an arc labeled to,,. (to,1 and ti, are

the copies of ul and w, in C1 , respectively.) So if we let [[C. E ... "( CbI]] 7 denote the

sequence obtained from [Ca E) "- ( Cb], by deleting the firability vectors, then we have

{[[Clj]]Ia E £(2)} = {(ujwj)'}. The firability vectors of C: have the form [ x ] where x
I Y I

and y are the token counts of places P0,5 and pl,5, respectively, and it is easy to insert them

into (ulw:)w to obtain

Using an analogous argument for R3 , we can show that

Thus
{[Ci].]a E £(2)} = {[Ci]aI. E L(3)}.

0

A firing sequence satisfies formula t D <t' ("if t then eventually t") if every occurrence
of t is followed by an occurrence of t'.
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Lemma 10 (Liveness of R 2) A process that requests its critical section eventually enters
it, i.e., for i = O, 1,

S iC {((C,))Ia E C(2)} _ S'

for some nonempty Si and S' = {a E T"'Ia satisfies v, D Ov 2}, where T is the set of
transitions of C.

Proof We prove the claim for i = 1 and leave the case i = 0 to the reader. The first "C" is
trivial. We can show that every maximal simple path in G2 starting with an arc labeled v1,1
contains an arc labeled v1 ,2. (vl, 1 and v1,2 are the copies of v, and v2 in C 1, respectively.)
This proves the second "C." 0

In R 2, a firing of to,, (the copy of ul in CI) and a firing of tl,1 (the copy of w, in C1 )
represent the transfer of the privilege token, and Co and C1 can be in its critical section
only while it has the privilege token. The following lemma is based on this observation. For
a E L(2), p(a) denotes the sequence obtained from a by deleting all transitions except the
interface transitions to,1 and t1,1.

Lemma 11 (Safeness of R 2) Co and C1 cannot be in their critical sections at the same
time, i.e., p(a) = (to,it 1 ,1 )w for any a E £(2).

Proof The lemma is immediate from {[[C1h]]Qa E £(2)} = {(u 1 w1 )w} given in the proof of
Lemma 9. 0

Finally, we have the following theorem.

Theorem 3 (Correctness of Rk) For any k > 2, in ring Rk

1. a process that requests its critical section eventually enters it, and

2. no two processes can be in their critical sections at the same time.

Proof The theorem follows from Theorems 1, 2 and Lemmas 8, 9, 10 and 11. 0

5 A Simple Producer-Consumers System

Consider a ring consisting of one "producer" and many identical "consumers." The producer
generates a product that is circulated in the ring. A consumer receiving a product can either
pass it (without consuming it) to its right neighbor, or "consume" it and send "garbage"
to the right neighbor. Garbage received by a consumer is always passed to to its right
neighbor. The producer can generate a new product only when it receives garbage from its
left neighbor. We assume that the producer is allowed to pass or consume a product that
has been returned. If the producer consumes a product, it then sends garbage to its right
neighbor. We assume that at any time, there can be only one object (a product or garbage)
in the ring.

In this section, "C" refers to the component shown in Figure 7 that models a process
in such a ring. We assume that in Rk consisting of k components, Co is the producer and
C1 ,...,C - 1 are the consumers. Table 2 describes the events and conditions represented
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Figure 7: Component C for a producer-consumers system.

Table 2: Places and transitions of C.

pi have received a product
P2 ready to send a product

P3 have received garbage
p4 ready to send garbage
p5 one token for producer, empty tor consumer
u1 receive a product

U2 receive garbage

vI pass a product

v2  consume a product
v3 pass garbage
v4  generate a product (producer only)
w, send a product
W2  send garbage
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Figure 8: Structure of G2 .

by the transitions and places. Transition ul and u2 are the left interface transitions, and
w, and w2 are the right interface transitions. The initial marking of ring Rk is given as
Mk = (M, M',..., M'), where M = (00101) is for producer Co and M' = (00000) is for
consumers C 1,..., CA-,. (This notation was introduced in Section 4.) Note that transition
v4 ("generate a product") can fire only in Co, and initially Co has garbage in place Po,3. (Po,3
is the copy of p3 in Co.) We take Tk to be the set of all transitions of Rk. This means that
no component is allowed to always pass or always consume a product from some time on,
and the producer must generate a product infinitely often if garbage is returned infinitely
often. The system is considered to be correct if all components consume a product infinitely
many times.

Lemma 12 R 2 is structurally bounded.

Proof The proof is found in Appendix A. 0

Lemma 13 R2  R.

Proof By Lemma 3, it suffices to show that

1. {fCol. I a E £-o(2)} = {[Col. I a E £-o(3)}, and

2. {[C,]. I a E £-,1(2)} = {[Ci]. I a E £-,i(3)} for i = 1,2.

In the following, we give an outline of the proof of

f[Ci]. I a E £L.-(2)} = {[Cl]. I a E £L.-(3)} (5)

and leave the remaining cases to the reader. As we did in the proof of Lemma 9, let us
first characterize the set {[[Ci]]. Ia E L-. 1(2)}. Figure 8 shows the structure of G2 and the
labels of its arcs, where vertex X 1 represents the initial marking M2 . Since every vertex
of G2 has at least one outgoing arc, no finite path in G2 represents a firing sequence in
£.-1(2). This, together with the structure of G2 and the fact that toj, to, 2, t1 ,1 and t1, 2

are the copies of ul, u2, W1 and w2 in C1, respectively, shows that {[[Cl]]a Ia E £.1(2)}
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is a subset of {ul wi, UI W,2, u2 u'2}-. Furthermore, any infinite path from X, representing a
firing sequence in /-1(2) must visit vertex X, infinitely often (by the firings of tl, 2 ), since

otherwise, X 5 is visited infinitely often but X 2 is not, and thus the fairness condition at

Co (that Vo, 2 must be fired infinitely often if it becomes firable infinitely often) is violated.

Since X 1 is visited infinitely often, again by the fairness condition on v0 ,3 and v0 ,4 of CO,
both to, 1 and to,2 must fire infinitely often. Also, the fairness condition on vO,l and vo, 2 of Co
requires that if X5 is visited infinitely often (by the firings of tl,l), then both vo,1 and Vo,2
must fire infinitely often. Thus {f[C 1II] ja E £C-l(2)} C U, where U is the set of sequences
in {ulwl,ulw 2 ,u 2w2}' such that (a) both w2u, and w2 u2 appear infinitely often, and (b)
if wl appears infinitely often then both wlul and wlu 2 appear infinitely often. Conversely,
we can easily show that for any sequence a E U, there exists some 7 E £.1(2) that is
legal at Co such that [[C 1 ]], = a. Therefore {[[C 1]] Ia E L- 1(2)} = U. We then obtain

I[CI]. I a E £-1,(2)} by inserting, into the sequences in U, the firability vectors of C1 having
the form [XIX2

X3

X:4

where X1 ,. . ., x 4 are the token counts of places po,2, Po,4, P1,2 and P1,4, respectively. Since (a)

at most one of PO,2, Po,4, P1,2 and P1,4 can have a token at a time and (b) po,2, Po,4, P1,2 and

P1,4 can lose a token only when to,l, to, 2 , t1 ,1 and tl,2 fire, respectively, {[Cl]. Ia E £-l(2)}
is the set of sequences obtained from the sequences in U by replacing ul, u2 , wl and W2 by

0 1 0 0 0 0] 0 0

0 0 ul, [ [ U21 [ [a] [ W2, respectively. Using0 0 u, 0 0 u,0 1 wlad 0 0 wreptilyUsn

0 0 0 0 0 0 0 1

an analogous argument on G3 that has 12 vertices, we can show that {[C1 ]. I a E C- 1(3)}
coincides with {[C 1]. Ia E C-,1(2)} obtained above. 0

A firing sequence satisfies formula 0ct ("infinitely often t") if t occurs infinitely often
in it.

Lemma 14 (Liveness of R 2) Both Co and C1 consume a product infinitely often, i.e., for
i = 0, 1,

Si ((C c,)_0 E C(2)} C S'
for some nonempty Si and S' = {a E T'ja satisfies Ov 2}, where T is the set of transitions
of C.

Proof By examining G2 and using the fairness condition on Co and C1 , we can show that
both vo,2 and v 1 ,2 must fire infinitely often, where vo,2 and v1 ,2 are the copies of v 2 ("consume
a product") in Co and C1 , respectively. The argument is basically similar to that used in
the proof of Lemma 13, and is thus omitted. 0

Finally, we have the following theorem.

Theorem 4 (Correctness of Rk) For any k > 2, in ring Rk each component consumes
a product infinitely often.

Proof The theorem follows from Theorem I and Lemmas 12, 13 and 14. 0
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6 Concluding Remarks

We have introduced the concept of similarity between two process rings of fair Petri nets,
and proved a structural indiction theorem (Theorem I) that can be used to prove the
correctness of a ring of any large size from the correctness of a ring having only a few
components. The theorem has been applied to the verification problem of two examples,
token-passing mutual exclusion and a simple producer-consumers system.

The main condition needed for applying the theorem is the strong similarity between R2

and R3 , i.e., R2 ;.z R3 . It can happen, however, that for some k > 3, all rings R, I > k, are
mutually similar but R2 ; R3 does not hold. Such rings may still admit induction similar
to that of Theorem 1. We are currently working on a more general version of the theorem
that can be applied to such cases. Some results in this direction can be found in [9].

As was pointed out in Section 3, testing the strong similarity of two rings using an
automatic verifier can be time consuming. It is desirable that we find simple sufficient
conditions for two rings to be strongly similar. Another direction of research is to apply
the ideas developed for rings in this paper to other network topologies, such as stars, trees,
chains, meshes and completely connected graphs. It is an interesting problem to develop
analogous induction methods for such networks.

Appendix A

For a Petri net N = (PT, F) such that P = {pj,...,p,} and T {t,...,tm}, the incidence
matrix of N is an m x n matrix A = [aij] such that ai,, = F(t,,pj) - F(pj,ti). Note that
aij is the change in the token count of place pj when transition ti fires once. It is known
that N is structurally bounded iff there exists an n-dimensional vector y of positive integers
such that Ay <C 0 [14]. (y is called an S-invariant if Ay = 0.) The condition Ay < 0 assures
that the weighted sum of token counts of a marking never increases after a firing of any
transition, where the j-th element of y is the weight assigned to pj.

Proof of Lemma 2 Assume that C has n places, s internal transitions and m interface
transitions on each side. For any k > 2, since the components Co,..., Ck- 1 have the same
structure and only the interface transitions between two components can be connected to
the places in both, the incidence matrix Ak for Rk can be written as a k(s + m) x kn matrix

B 0 0 ... 0
D E 0 ... 0

0 B 0 ... 0

Ak = o D E ... 0

0 0 0 ... B
LE 0 0 ... D

where B is an s x n matrix describing the connections among the n places and s internal
transitions of a component, D and E are m x n matrices such that (D E) describes the
connections among the 2n places of two consecutive components and m interface transitions
between them, and 0 is a zero matrix of appropriate dimensions. Since R 2 is structurally
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bounded, there exists a 21t-dimensional vector of positive integers

Y2 = [b

where a and b are i-dimensional vectors, such that

B 0

A2Y2 D E a ] < _ O

E D

Then Ba < 0, Da + Eb < 0, Bb < 0, and Ea + Db < 0, and thus

A2 a[+ b < 0.

Then it is easy to show that the kn-dimensional vector

a+b]
a+b

Sa+b]

satisfies
"Akyk < 0.

So Rk is structurally bounded. C3

Proof of Lemma 8 Choose y that assigns 2 to P0 ,4 and PI14 (the copies of p4 in Co and C 1 ,

respectively), and 1 to all other places. Then y satisfies A2 y = 0, where A2 is the incidence
matrix of R2 . []

Proof of Lemma 12 Choose y that assigns 1 to all places. Then y satisfies A2 y ! 0,
where A 2 is the incidence matrix of R 2 . []
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